Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Chem Biodivers ; 19(11): e202200266, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2127606

ABSTRACT

The unprecedented global pandemic of COVID-19 has created a daunting scenario urging an immediate generation of therapeutic strategy. Interventions to curb the spread of viral infection primarily include setting targets against the virus. Here in this study we target S protein to obstruct the viral attachment and entry and also the M pro to prevent the viral replication. For this purpose, the interaction of S protein and M pro with phytocompounds, sanguinarine and eugenol, and their derivatives were studied using computational tools. Docking studies gave evidence that 8-hydroxydihydrosanguinarine (8-HDS), a derivative of sanguinarine, showed maximum binding affinity with both the targets. The binding energies of the ligand with S protein and M pro scored to be ΔGb -9.4 Kcal/mol and ΔGb -10.3 Kcal/mol, respectively. MD simulation studies depict that the phytocompound could effectively cause structural perturbations in the targets which would affect their functions. 8-Hydroxydihydrosanguinarine distorts the α-helix in the secondary structure of M pro and RBD site of S protein. Protein-protein interaction study in presence of 8-hydroxydihydrosanguinarine also corroborate the above findings which indicate that this polyphenol interferes in the coupling of S protein and ACE2. The alterations in protonation of M pro suggest that the protein structure undergoes significant structural changes at neutral pH. ADME property of 8-hydroxydihydrosanguinarine indicates this could be a potential drug. This makes the phyto-alkaloid a possible therapeutic molecule for anti COVID-19 drug design.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Pyridones
3.
Biomed Pharmacother ; 143: 112095, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1392164

ABSTRACT

Angiotensin-converting enzyme-2 (ACE2) is one of the major components of the renin-angiotensin system (RAS) and participates in the physiological functions of the cardiovascular system and lungs. Recent studies identified ACE2 as the receptor for the S-protein of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and thus acts as the gateway for viral entry into the human body. Virus infection causes an imbalance in the RAS axis and induces acute lungs injury and fibrosis. Various factors regulate ACE2 expression patterns as well as control its epigenetic status at both transcription and translational levels. This review is mainly focused on the impact of environmental toxicants, drugs, endocrine disruptors, and hypoxia as controlling parameters for ACE2 expression and its possible modulation by epigenetic changes which are marked by DNA methylation, histone modifications, and micro-RNAs (miRNAs) profile. Furthermore, we have emphasized on interventions of various phytochemicals and bioactive compounds as epidrugs that regulate ACE2-S-protein interaction and thereby curb viral infection. Since ACE2 is an important component of the RAAS axis and a crucial entry point of SARS-CoV-2, the dynamics of ACE2 expression in response to various extrinsic and intrinsic factors are of contemporary relevance. We have collated updated information on ACE2 expression modulated by epidrugs, and urge to take over further studies on these important physiological regulators to unravel many more systemic linkages related to both metabolic and infectious diseases, in general and SARS-CoV-2 in particular for further development of targeted interventions.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19 , Epigenesis, Genetic , Hazardous Substances , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hazardous Substances/adverse effects , Hazardous Substances/metabolism , Humans , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL